Using Sets of Sound Waves to Levitate Liquids in Place

   

Research Using Sets of Sound Waves.

Scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have discovered a way to use sound waves to levitate individual droplets of solutions containing different pharmaceuticals. While the connection between levitation and drug development may not be immediately apparent, a special relationship emerges at the molecular level.

Levitation using sound waves

Levitation using sound waves

 

The acoustic levitator uses two small speakers to generate sound waves at frequencies slightly above the audible range – roughly 22 kilohertz. When the top and bottom speakers are precisely aligned, they create two sets of sound waves that perfectly interfere with each other, setting up a phenomenon known as a standing wave.

 

 

 

At certain points along a standing wave, known as nodes, there is no net transfer of energy at all. Because the acoustic pressure from the sound waves is sufficient to cancel the effect of gravity, light objects are able to levitate when placed at the nodes.

Sound waves levitate these liquids individually

Sound waves levitate these liquids individually

Soundwaves allow what would seem like majic to most people

Using Levitation to Make Better Drugs

While the connection between levitation and drug development may not be immediately apparent, a special relationship emerges at the molecular level.

At the molecular level, pharmaceutical structures fall into one of two categories: amorphous or crystalline. Amorphous drugs typically are more efficiently taken up by the body than their crystalline cousins; this is because amorphous drugs are both more highly soluble and have a higher bioavailability, suggesting that a lower dose can produce the desired effect.

“One of the biggest challenges when it comes to drug development is in reducing the amount of the drug needed to attain the therapeutic benefit, whatever it is,” said Argonne X-ray physicist Chris Benmore, who led the study.

Regardless of the benefits to the drug industry, this is a pretty cool technology you must admit.