Smart Cube-Sat Technology Changing Space Exploration

Space exploration is an expensive and dangerous venture. Sending human astronauts into space assure that the world pays attention to the mission which helps with acceptance for public funding. However an accident that results in a human death could set the space program back decades. This is the reality that companies like Space-X must deal with.

When it comes to satellites for communication, observation ( spying?) or scientific discover there new options that are very economical and relativity safe to use. What I am talking about here are cube-sat or very small satellites packaged with artificial intelligence and sensors specific to the mission. These very small packages can be very targeted to a single purpose which allows them to stay small and inexpensive. Launching sat-cubes could be done with a standard payload rocket loaded with hundreds of small satellites.

Today these cube-sat are perfect for science. It is what will come in the future that we need to think about. Consider for a moment, thousands of hunter-seeker sat-cubes armed with high powered lasers capable of destroying other satellites. If they are given the ability to be autonomous using artificial intelligence these swarms of sat-cube weapons could change space to a battlefield loaded with the equivalent of land mines. – Food for thought right?

Here is a peacetime scientific cube-sat recently placed into service.

A 60-year-old mystery about the source of energetic, potentially damaging particles in Earth’s radiation belts has been solved using data from a Cubesat designed by students.

Students design this cube-sat

Students design this cube-sat

Imagine a fully instrumented satellite the size of a half-gallon milk carton. Then imagine that milk carton whirling in space, catching never-before-seen glimpses of atmospheric and geospace processes.

CubeSats, named for the roughly 4-inch-cubed dimensions of their basic building elements, are stacked with smartphone-like electronics and tiny scientific instruments.

Built mainly by students and hitching rides into orbit on NASA and U.S. Department of Defense launch vehicles, the small, low-cost satellites have been making history.

Now, results from a new study using CubeSats indicate that energetic electrons in Earth’s inner radiation belt,primarily near its inner edge are created by cosmic rays born from supernova explosions, said scientist Xinlin Li of the University of Colorado Boulder (CU Boulder).

Van Allen radiation belt

Van Allen radiation belt

Earth’s dual radiation belts, known as the Van Allen belts, are layers of energetic particles held in place by the planet’s magnetic field.

Soon after the discovery of the Van Allen radiation belts in 1958, American and Russian scientists concluded that the process of “cosmic ray albedo neutron decay” (CRAND) was likely the source of the high-energy particles trapped in Earth’s magnetic field. But over the following decades, no one successfully detected the corresponding electrons that should be produced during the neutron decay.

Li’s team showed that during CRAND, cosmic rays entering Earth’s atmosphere collide with neutral atoms, creating a splash that produces charged particles, including electrons, that become trapped by Earth’s magnetic field.

The findings have implications for understanding and better forecasting the arrival of energetic electrons from space, which can damage satellites and threaten the health of space-walking astronauts, said Li.

We are reporting the first direct detection of these energetic electrons near the inner edge of Earth’s radiation belts.We have finally solved a six-decade-old mystery.

A paper presenting the findings is published in this week’s issue of the journal Nature. Li is the lead author. The study was funded by the National Science Foundation (NSF).

“These results reveal, for the first time, how energetic charged particles in the near-Earth space environment are created,” said Irfan Azeem, a program director in NSF’s Division of Atmospheric and Geospace Sciences, which supported the research.

The findings will significantly improve our understanding of the Earth-space environment. It’s exciting to see NSF-funded CubeSats, built by undergraduate and graduate students are at the center of a significant scientific discovery.

The CubeSat mission, called the Colorado Student Space Weather Experiment (CSSWE), housed a small telescope to measure the flux of solar energetic protons and Earth’s radiation belt electrons.

Launched in 2012 aboard an Atlas V rocket, CSSWE involved more than 65 students and was operated for more than two years from a ground station on the roof of a building on the CU-Boulder campus.

Hi Tech Telescopes.

Part of the work of CSSWE involved building a smaller version of an instrument developed by a CU-Boulder team led by Nature paper co-author Daniel Baker and launched on NASA’s 2012 Van Allen Probes mission. The modified instrument is called the Relativistic, Electron and Proton Telescope integrated little experiment (REPTile).

“This is really a beautiful result and a big insight derived from a remarkably inexpensive student satellite, illustrating that good things can come in small packages,” said Baker.

It’s a major discovery of what has been there all along, a demonstration that Yogi Berra was correct when he remarked, ‘You can observe a lot just by looking.


(Visited 184 times, 1 visits today)

Smart Cube-Sat Technology Changing Space Exploration


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

This site uses Akismet to reduce spam. Learn how your comment data is processed.